z-logo
open-access-imgOpen Access
Properties of vanadium-base alloys irradiated in the dynamic helium charging experiment
Author(s) -
H.M. Chung,
B.A. Loomis,
D.L. Smith
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/212524
Subject(s) - materials science , helium , vanadium , irradiation , ductility (earth science) , ultimate tensile strength , microstructure , brittleness , hardening (computing) , alloy , composite material , metallurgy , nuclear physics , atomic physics , creep , physics , layer (electronics)
One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx} 0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18--31 dpa at 425--600 C in Li-filled capsules in a sodium-cooled fast reactor. This paper presents results of postirradiation examination and tests of microstructure and mechanical properties of V-5Ti, V-3Ti-1Si, V-8Cr-6Ti, and V-4Cr-4Ti (the latter alloy has been identified as the most promising candidate vanadium alloy). Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at > 420 C. However, postirradiation ductilities at < 250 C were higher than those of the non-DHCE specimens (< 0.1 appm helium), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. Ductile-brittle transition behavior of the DHCE specimens was also determined from bend tests and fracture appearance of transmission electron microscopy (TEM) disks and broken tensile specimens. No brittle behavior was observed at temperatures > {minus}150 C in DHCE specimens. Predominantly brittle-cleavage fracture morphologies were observed only at {minus}196 C in some specimens that were irradiated to 31 dpa at 425 C during the DHCE. For the helium generation rates in this experiment ({approx} 0.4--4.2 appm He/dpa), grain-boundary coalescence of helium microcavities was negligible and intergranular fracture was not observed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom