Apache Leap Tuff INTRAVAL experiments - results and lessons learned
Author(s) -
Todd C. Rasmussen,
S.C. Rhodes,
Amador M. Guzmán,
Shlomo P. Neuman
Publication year - 1996
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/211317
Subject(s) - borehole , isothermal process , permeability (electromagnetism) , geology , block (permutation group theory) , tracer , heat flow , geotechnical engineering , scale (ratio) , mineralogy , thermal , petroleum engineering , mechanics , thermodynamics , chemistry , physics , geometry , mathematics , nuclear physics , biochemistry , membrane , quantum mechanics
Data from laboratory and field experiments in unsaturated fractured rock are summarized and interpreted for the purpose of evaluating conceptual and numerical models of fluid, heat and solute transport. The experiments were conducted at four scales, in small cores (2.5-cm long by 6-cm across), a large core (12-cm long by 10-cm across), a small block containing a single fracture (20 x 21 x 93 cm), and at field scales in boreholes (30-m long by 10-cm across) at three scales (1/2-, 1- and 3-meters). The smallest scale in the laboratory provided isothermal hydraulic and thermal properties of unfractured rock. Nonisothermal heat, fluid and solute transport experiments were conducted using the large core. Isothermal gas and liquid flow experiments were conducted in the fractured block. Field-scale experiments using air were used to obtain in situ permeability estimates as a function of the measurement scale. Interpretation of experimental results provides guidance for resolving uncertainties related to radionuclide migration from high level waste repositories in unsaturated fractured rock
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom