z-logo
open-access-imgOpen Access
Surface Modified Coals for Enhanced Catalyst Dispersion and Liquefaction
Author(s) -
Yaw D. Yeboah
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/2103
Subject(s) - pulmonary surfactant , adsorption , chemistry , catalysis , ferrous , ammonium bromide , sodium dodecyl sulfate , dispersion (optics) , inorganic chemistry , cationic polymerization , zeta potential , sulfate , surface charge , chemical engineering , organic chemistry , nanoparticle , physics , optics , engineering , biochemistry
The aim of this study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, the effects of dodecyl dimethyl ethyl ammonium bromide (DDAB) (a cationic surfactant), sodium dodecyl sulfate (SDS) (an anionic surfactant), Triton X-100 (a neutral surfactant), and ferrous sulfate (as a catalyst precursor) on the coal surface charge at various pH values were determined. The results of the zeta potential measurements suggest that ferrous sulfate as catalyst precursor creates a distinctly different condition on the coal surface compared to that of molybdenum as reported in the previous progress reports. The effects of the adsorption of the surfactants also varied distinctly with the type of surfactant. With the adsorption of DDAB, the cationic surfactant, the surface charge was more positive. The opposite effect was observed for the SDS, the anionic surfactant. The coals treated with Triton X-100, the neutral surfactant, also showed an overall negative surface charge density. The adsorption of the catalyst precursor (ferrous sulfate) resulted in a net negative charge on the coal surface

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom