z-logo
open-access-imgOpen Access
Coal precursors for carbon molecular sieves. Quarterly report, October 1, 1995--December 31, 1995
Author(s) -
Oliver Kopp,
C.R. Sparks,
E.L. Fuller
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/208357
Subject(s) - coal , pyrolysis , carbon fibers , activated carbon , work (physics) , waste management , chemistry , environmental science , mineralogy , chemical engineering , materials science , adsorption , thermodynamics , engineering , organic chemistry , physics , composite material , composite number
We have completed the remainder of our experimental work during this work period and have extracted much of the data from the many analyses performed. The temperatures at which selected thermal reactions occur and the temperatures at which monitored gases are released are in the process of being read from the computerized data. The data gleaned from the literature and the data we have gathered will be combined and examined using multiple regression analysis. During the course of our study we performed 55 BET analyses (including 12 fresh coal analyses, 10 coal samples that had been pyrolyzed in helium gas, 24 coal samples that had been activated using He-O2, 5 coal samples activated using He-H2O, and 4 coals samples activated using CO2). The number of BET analyses performed far exceeds the number we had planned when this project was first proposed. These analyses provide information that reveals the effects that factors such as the gas (or gas mixture) used for activation, the maximum temperature reached during activation, grain size, etc., have on the degree to which a coal is activated. These relationships are described, briefly, below. They will be discussed in detail in the Final Report. During this work period the FTIR equipment became available and we completed the FTIR analyses of all twelve (12) coal samples

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom