z-logo
open-access-imgOpen Access
General purpose photoneutron production in MCNP4A
Author(s) -
Franz X. Gallmeier
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/207563
Subject(s) - beryllium , nuclear physics , physics , neutron , electromagnetic shielding , neutron source , nuclear engineering , engineering , quantum mechanics
A photoneutron production option was implemented in the MCNP4A code, mainly to supply a tool for reactor shielding calculations in beryllium and heavy water environments of complicated three-dimensional geometries. Photoneutron production cross sections for deuterium and beryllium were created. Subroutines were developed to calculate the probability of photoneutron production at photon collision sites and the energy and flight direction of the created photoneutrons. These subroutines were implemented into MCNP4A. Some small program changes were necessary for processing the input to read the photoneutron production cross sections and to install a photoneutron switch. Some arrays were installed or extended to sample photoneutron creation and loss information, and output routines were changed to give the appropriate summary tables. To verify and validate the photoneutron production data and the MCNP4A implementations, the yields of photoneutron sources were calculated and compared with experiments. In the case of deuterium-based photoneutron sources, the calculations agreed well with the experiments; the beryuium-based photoneutron source calculations were up to 30% higher compared with the measurements. More accurate beryllium photoneutron cross sections would be desirable. To apply the developed method to a real shielding problem, the fast neutron fluxes in the heavy-water-filled reflector vessel of the Advanced Neutron Source reactor were investigated and compared with published DORT calculations. Considering the complete independence between the calculations, the merely 10 to 20% lower fluxes obtained with MCNP4A, compared against the DORT results, were more than satisfactory, as the discrepancy is based primarily on differences in the calculated thermal neutron fluxes

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom