Brick manufacture with fly ash from Illinois coals. Technical report, March 1, 1995--May 31, 1995
Author(s) -
Randall E. Hughes,
G.B. Dreher,
D.M. Moore,
Massoud RostamAbadi,
T. Fiocchi,
D. Swartz
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/205908
Subject(s) - fly ash , brick , tile , environmental science , waste management , coal , absorption of water , engineering , materials science , civil engineering , composite material
This investigation seeks to utilize fly ash in fired-clay products such as building and patio bricks, ceramic blocks, field and sewer tile, and flower pots. This goal is accomplished by 1) one or more plant-scale, 5000-brick tests of fly ash mixed with brick clays at the 20% or higher level; 2) a laboratory-scale study to measure the firing reactions of a range of compositions of clay and fly ash mixtures; 3) a preliminary study to evaluate the potential environmental and economic benefits of brick manufacture with fly ash. Bricks and feed materials will be tested for compliance with market specifications and for leachability of pollutants derived from fly ash. The laboratory study will combine ISGS databases, ICCI-supported characterization methods, and published information to improve predictions of the firing characteristics of Illinois fly ash and brick clay mixtures. Because identical methods are used to test clay firing and coal ash fusion, and because melting mechanisms are the same, improved coal ash fusion predictions are and additional expected result of this research. During this quarter we completed a manufacturing run at Colonial Brick Co. and began laboratory testing of samples from that run: clays, fly ash (from Illinois Power Company`s Wood River plant), and green and fired bricks, with and without fly ash. Bricks with 20% fly ash ``scummed`` during firing, and the fly ash failed to increase oxidation rate or water absorption, which were both expected. We obtained chemical and mineralogical analyses of the fireclays and shales at Colonial and Marseilles Brick Companies and began a series of selective dissolution analyses to more accurately determine the composition of the principal clay minerals in brick clays and the components in fly ash. We began related work of calculating normative mineralogical analyses for all clays and fly ashes that we sample
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom