
Effects of grit roughness and pitch oscillations on the S810 airfoil
Author(s) -
R.R. Ramsay,
Matthew J. Hoffman,
G. M. Gregorek
Publication year - 1996
Language(s) - English
Resource type - Reports
DOI - 10.2172/204224
Subject(s) - airfoil , lift coefficient , stall (fluid mechanics) , angle of attack , pitching moment , amplitude , reynolds number , lift (data mining) , drag coefficient , aerodynamic center , mechanics , reduced frequency , physics , pressure coefficient , wind tunnel , drag , steady state (chemistry) , mathematics , aerodynamics , optics , turbulence , chemistry , computer science , data mining
An S810 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory 3 x 5 subsonic wind tunnel under steady state and unsteady conditions. The test defined baseline conditions for steady state angles of attack from -20{degrees} to +40{degrees} and examined unsteady behavior by oscillating the model about its pitch axis for three mean angles, three frequencies, and two amplitudes. For all cases, Reynolds numbers of 0.75, 1, 1.25, and 1.5 million were used. In addition, the above conditions were repeated after the application of leading edge grit roughness (LEGR) to determine contamination effects on the airfoil performance. Baseline steady state results of the S810 testing showed a maximum lift coefficient of 1.15 at 15.2{degrees}angle of attack. The application of LEGR reduced the maximum lift coefficient by 12% and increased the 0.0085 minimum drag coefficient value by 88%. The zero lift pitching moment of -0.0286 showed a 16% reduction in magnitude to -0.0241 with LEGR applied. Data were also obtained for two pitch oscillation amplitudes: {plus_minus}5.5{degrees} and {plus_minus}10{degrees}. The larger amplitude consistently gave a higher maximum lift coefficient than the smaller amplitude and both sets of unsteady maximum lift coefficients were greater than the steady state values. Stall was delayed on the airfoil while the angle of attack was increasing, thereby causing an increase in maximum lift coefficient. A hysteresis behavior was exhibited for all the unsteady test cases. The hysteresis loops were larger for the higher reduced frequencies and for the larger amplitude oscillations. In addition to the hysteresis behavior, an unusual feature of these data were a sudden increase in the lift coefficient where the onset of stall was expected. As in the steady case, the effect of LEGR in the unsteady case was to reduce the lift coefficient at high angles of attack