z-logo
open-access-imgOpen Access
The reactions of Na{sub 2} with O{sub 2}
Author(s) -
H. Hou,
K. T. Lu,
V. Sadchenko,
A. G. Suits,
Y.T. Lee
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/201703
Subject(s) - excited state , atomic physics , crossed molecular beam , chemistry , stripping (fiber) , molecular beam , center of mass (relativistic) , molecule , beam (structure) , chemical reaction , angstrom , kinetic energy , center (category theory) , physics , analytical chemistry (journal) , crystallography , materials science , biochemistry , organic chemistry , classical mechanics , energy–momentum relation , quantum mechanics , optics , composite material , chromatography
The reactions of Na{sub 2} with O{sub 2} were studied in a crossed-beam experiment at collision energies (E{sub c}) of 8 and 23 kcal/mol. The formation of NaO{sub 2} + Na was observed at both collision energies, with the angular distributions of NaO{sub 2} in the center of mass coordinates peaking strongly forward with respect to the direction of the O{sub 2} beam, suggesting that the reaction is completed in a time scale that is shorter than one rotational period of the molecular system. From the velocity distribution of the products, the authors found that the newly formed NaO{sub 2} molecules are internally excited, with less than 20% of the available energy appearing in the translational motion of the separating products. These results indicate a ``spectator stripping`` mechanism for the reaction, with the O{sub 2} stripping one Na off the Na{sub 2} molecules. At E{sub c} = 23 kcal/mol the cross section for this reaction channel is estimated to be 0.8 {angstrom}{sup 2}. Another reaction channel which produces NaO + NaO was seen at E{sub c} = 23 kcal/mol. The angular distribution for NaO is broad and forward-backward symmetric in the center of mass frame. A substantial fraction of the available energy is released into the relative motion of the products. This reaction is likely to proceed on an excited potential energy surface since a charge transfer to the excited O{sub 2}{sup {minus}} orbitals seems necessary for breaking the O-O bond. The measurement yields a bond energy of 60 kcal/mol for the Na-O molecule, and a total cross section of 2 {angstrom}{sup 2} for this reaction channel at E{sub c} = 23 kcal/mol

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom