z-logo
open-access-imgOpen Access
Temperature-dependent tensile strength, surface roughness diagnostics, and magnetic support and positioning of polymer ICF shells. Final report, October 1, 1993--April 30, 1995
Author(s) -
A. Hönig
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/184296
Subject(s) - materials science , surface roughness , emissivity , polystyrene , atmospheric temperature range , ultimate tensile strength , composite material , surface finish , temperature coefficient , polymer , analytical chemistry (journal) , condensed matter physics , optics , chemistry , thermodynamics , physics , chromatography
During the course of this grant, we perfected emissivity and accommodation coefficient measurements on polymer ICF shells in the temperature range 250 to 350 K. Values for polystyrene shells are generally between 10{sup -2} and 10{sup -3}, which are very advantageous for ICF at cryogenic temperatures. Preliminary results on Br doped target shells indicate an accommodation coefficient, presumably associated with surface roughness on an atomic scale, about an order of magnitude larger than for ordinary polystyrene target shells. We also constructed apparatus with optical access for low temperature tensile strength and emissivity measurements, and made preliminary tests on this system. Magnetic shells were obtained both from GDP coating and from doping styrene with 10 manometer size ferromagnetic particles. The magnetic properties were measured through electron spin resonance (ESR). These experiments confirm the applicability of the Curie law, and establish the validity of using ESR measurements to determine shell temperature in the low temperature regime from 4K to 250K, thus complementing our presently accessible range. The high electron spin densities (> 10{sup 20}/CM{sup 3}) suggest magnetic levitation should be feasible at cryogenic temperatures. This work has resulted in two conference presentations, a Technical Report, a paper to be published in Fusion Technology, and a Master`s Thesis

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom