Predictability and feedbacks of the ocean-soil-plant-atmosphere water cycle: deep learning water conductance in Earth System Model
Author(s) -
Alexandre A. Renchon,
Roser Matamala,
Miquel A. GonzàlezMeler,
Zoë G. Cardon,
Sébastien Lacube,
Julie Jastrow,
Beth Drewniak,
Jules Cacho,
James Franke
Publication year - 2021
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1769763
Subject(s) - predictability , environmental science , water cycle , data assimilation , stomatal conductance , earth system science , precipitation , water content , land cover , climatology , vegetation (pathology) , atmosphere (unit) , meteorology , atmospheric sciences , land use , geology , oceanography , ecology , geography , photosynthesis , medicine , physics , botany , geotechnical engineering , pathology , quantum mechanics , biology
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom