Learning from learning machines: improving the predictive power of energy-water-land nexus models with insights from complex measured and simulated data
Author(s) -
J. Brown,
Michael B. Sohn,
Utkarsh Mital,
Dipankar Dwivedi,
Haruko Wainwright,
Carl I. Steefel,
Eoin Brodie,
William D. Collins,
Daniel Jacobson,
Michael W. Mahoney,
Tianzhen Hong,
Christoph Gehbauer,
Doug Black,
Thomas W. Kirchstetter,
Daniel Arnold,
Sean Peisert
Publication year - 2021
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1769736
Subject(s) - nexus (standard) , data science , computer science , energy modeling , earth system science , scale (ratio) , probabilistic logic , process (computing) , forcing (mathematics) , temporal scales , uncertainty quantification , machine learning , artificial intelligence , efficient energy use , engineering , geography , ecology , cartography , climatology , geology , electrical engineering , biology , embedded system , operating system
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom