z-logo
open-access-imgOpen Access
AI-Constrained Bottom-Up Ecohydrology and Improved Prediction of Seasonal, Interannual, and Decadal Flood and Drought Risks
Author(s) -
Forrest M. Hoffman,
Jitendra Kumar,
Zheng Shi,
Anthony P. Walker,
Jiafu Mao,
Yaoping Wang,
Abigail L. S. Swann,
James T. Randerson,
Umakant Mishra,
Gabriel J. Kooperman,
Hyungjun Kim,
Chonggang Xu,
Charles D. Koven,
David M. Lawrence,
Megan D. Fowler,
Martin G. De Kauwe,
Belinda E. Medlyn,
Lianhong Gu,
Liz Agee,
J. M. Warren,
Shawn Serbin,
Alistair Rogers,
Trevor F. Keenan,
Nate G. McDowell,
Nathan Collier,
Sarat Sreepathi,
Juan M. Restrepo,
Richard Archibald,
Feng Bao,
Richard T. Mills
Publication year - 2021
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1769668
Subject(s) - hierarchy , flood myth , big data , analytics , computer science , ecohydrology , data science , environmental science , climatology , artificial intelligence , data mining , machine learning , geology , geography , ecology , archaeology , ecosystem , biology , economics , market economy

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom