Dehumidification Grain Dryer
Author(s) -
J.W. Lula,
G.W. Bohnert
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/16593
Subject(s) - scrap , waste management , reuse , truck , kiln , crumb rubber , environmental science , energy recovery , natural rubber , engineering , materials science , energy (signal processing) , automotive engineering , composite material , mechanical engineering , mathematics , statistics
A new technique developed during this project dries grain with mildly heated, dehumidified air in a closed-loop process. This proposed technique uses about one-tenth the energy and dries grain at a lower temperature, producing less damage to the kernels.Approximately 250 million automotive and truck tires are discarded each year in the U.S. The very properties that ensure a safe ride and long service life make the disposal of these scrap tires difficult. In spite of this, scrap tire recycling/reuse has rapidly grown from 10% in 1985 to over 90% today. The majority of scrap tires that are recycled/reused are burned for fuel in power plants and cement kilns. Since tires have somewhat higher heating value than coal, this would at first seem to be an acceptable option. But burning scrap tires recovers only 25% of the energy originally used to manufacture the rubber. An alternative is to use the scrap tires in the form of crumb rubber, by which 98% of the original energy is recovered. This project sought to explore potential formulations of crumb rubber with various thermoplastic binders, with one goal being developing a material for a low-cost, high-performance roofing composition. What was the state-of-the-art of the product/process prior to initiation of the project? Why was the project needed (e.g., performance, quality, cost, time to market)? Describe the strengths and interests of each party and how they are complementary with respect to the project. What KCP expertise was needed and how did it complement the partner's capabilities
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom