Xyce Parallel Electronic Simulator Users' Guide (V.6.12)
Author(s) -
Eric Keiter,
Thomas Russo,
Richard Schiek,
Heidi Thornquist,
Ting Mei,
Jason Verley,
Peter Sholander,
Karthik Aadithya
Publication year - 2019
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1571712
Subject(s) - computer science , solver , supercomputer , parallel computing , code (set theory) , coding (social sciences) , computer architecture , programming language , statistics , mathematics , set (abstract data type)
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: • Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. • A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. • Device models that are specifically tailored to meet Sandia’s needs, including some radiation-aware devices (for Sandia users only). • Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase — a message passing parallel implementation — which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom