Phase separation and crystallization of complex borosilicate melts for glass-ceramic waste forms
Author(s) -
Richard K. Brow
Publication year - 2019
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1505513
Subject(s) - borosilicate glass , crystallization , materials science , ceramic , glass ceramic , phase (matter) , chemical engineering , mineralogy , composite material , chemistry , engineering , organic chemistry
Waste loadings of reprocessed spent nuclear fuel vitrified into borosilicate glass can be increased by precipitating environmentally stable phases concentrated with waste components in a chemically stable glass matrix. The principal objective of this study was to characterize the development of crystalline powellite (CaMoO4 and related phases) and oxyapatite (Ca2LN8Si6O26) in borosilicate glass-ceramics and to determine how the formation of those phases affected its chemical durability. Borosilicate glasses provided by PNNL were re-melted and quenched at rates from over 300°C/s to ~0.05°C/s. Isothermal heat treatment experiments were conducted by quenching melts in a molten tin bath at various temperatures, holding for periods of time, and then quenching in a water bath. Analytical electron microscopy and x-ray diffraction provided information about the kinetics of the phase separation and crystallization processes responsible for microstructural development. Powellite and oxyapatite crystals formed during slower quench rates and longer isothermal times, and time-temperaturetransformation (TTT) diagrams were developed from the latter experiments. A hot thermocouple test (HTT) system was built to rapidly quench melts and hold them at set times to provide supplementary TTT information, but that system was not as sensitive to the phase transformations as other tests. Corrosion tests were performed to understand how the individual phases in the glass-ceramic affect its overall chemical durability. Product consistency tests, performed at Missouri S&T and at Savannah River National Lab, provided release rates of major elements from samples as a function of cooling rate, and atomic force microscopy and profilometry measurements of surface topology determined the relative corrosion rates of
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom