Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation
Author(s) -
Ronald E. Glaser,
G. Jóhannesson,
Samarjit Sengupta,
Branko Kosović,
Steven F. Carle,
G Franz,
Roger D. Aines,
J Nitao,
W Hanley,
A Ramirez,
R. L. Newmark,
V Johnson,
K Dyer,
Kevin Henderson,
G Sugiyama,
T Hickling,
M. E. Pasyanos,
David Jones,
Rüdiger Grimm,
Richard A. Levine
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/15009813
Subject(s) - computer science , markov chain monte carlo , robustness (evolution) , monte carlo method , markov chain , sampling (signal processing) , scale (ratio) , monte carlo tree search , bayesian probability , representation (politics) , mathematical optimization , machine learning , mathematics , artificial intelligence , statistics , biochemistry , chemistry , physics , filter (signal processing) , quantum mechanics , computer vision , gene , politics , law , political science
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom