z-logo
open-access-imgOpen Access
Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation
Author(s) -
Ronald E. Glaser,
G. Jóhannesson,
Samarjit Sengupta,
Branko Kosović,
Steven F. Carle,
G Franz,
Roger D. Aines,
J Nitao,
W Hanley,
A Ramirez,
R. L. Newmark,
V Johnson,
K Dyer,
Kevin Henderson,
G Sugiyama,
T Hickling,
M. E. Pasyanos,
David Jones,
Rüdiger Grimm,
Richard A. Levine
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/15009813
Subject(s) - computer science , markov chain monte carlo , robustness (evolution) , monte carlo method , markov chain , sampling (signal processing) , scale (ratio) , monte carlo tree search , bayesian probability , representation (politics) , mathematical optimization , machine learning , mathematics , artificial intelligence , statistics , biochemistry , chemistry , physics , filter (signal processing) , quantum mechanics , computer vision , gene , politics , law , political science

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom