z-logo
open-access-imgOpen Access
Tools to Address Glare and Avian Flux Hazards from Solar Energy Systems
Author(s) -
Clifford K. Ho,
Cianan Sims,
Julius Yellowhair,
Tim Wendelin
Publication year - 2018
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1476164
Subject(s) - heliostat , glare , environmental science , solar energy , hazard , computer science , solar power , adaptation (eye) , simulation , engineering , power (physics) , electrical engineering , optics , physics , layer (electronics) , chemistry , organic chemistry , quantum mechanics
This report describes software tools that can be used to evaluate and mitigate potential glare and avian-flux hazards from photovoltaic and concentrating solar power (CSP) plants. Enhancements to the Solar Glare Hazard Analysis Tool (SGHAT) include new block-space receptor models, integration of PVWatts for energy prediction, and a 3D daily glare visualization feature. Tools and methods to evaluate avian-flux hazards at CSP plants with large heliostat fields are also discussed. Alternative heliostat standby aiming strategies were investigated to reduce the avian-flux hazard and minimize impacts to operational performance. Finally, helicopter flyovers were conducted at the National Solar Thermal Test Facility and at the Ivanpah Solar Electric Generating System to evaluate the alternative heliostat aiming strategies and to provide a basis for model validation. Results showed that the models generally overpredicted the measured results, but they were able to simulate the trends in irradiance values with distance. A heliostat up-aiming strategy is recommended to alleviate both glare and avian-flux hazards, but operational schemes are required to reduce the impact on heliostat slew times and plant performance. Future studies should consider the tradeoffs and collective impacts on these three factors of glare, avian-flux hazards, and plant operations and performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom