Evaluation of thermo-hydrological performance in support of the thermal loading systems study
Author(s) -
T.A. Buscheck,
J.J. Nitao,
S.F. Saterlie
Publication year - 1994
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/145594
Subject(s) - environmental science , boiling , moisture , radioactive waste , infiltration (hvac) , natural convection , thermal , hydrology (agriculture) , convection , materials science , waste management , geology , geotechnical engineering , meteorology , chemistry , engineering , physics , organic chemistry , composite material
Heat generated as a result of emplacing spent nuclear fuel will significantly affect the pre- and post-closure performance of the Mined Geological Disposal System (MGDS) at the potential repository site in Yucca Mountain. Understanding thermo-hydrological behavior under repository thermal loads is essential in (a) planning and conducting the site characterization and testing program, (b) designing the repository and engineered barrier system, and (c) assessing performance. The greatest concern for hydrological performance is source of water that would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. The primary sources of liquid water are: (1) natural infiltration, (2) condensate generated under boiling conditions, and (3) condensate generated under sub-boiling conditions. Buoyant vapor flow, occurring either on a sub-repository scale or on a mountain scale, any affect the generation of the second and third sources of liquid water. A system of connected fractures facilitates repository-heat-driven gas and liquid flow as well as natural infiltration. With the use of repository-scale and sub-repository-scale models, the authors analyze thermo-hydrological behavior for Areal Mass Loadings (AMLs) of 24.2, 35.9, 55.3, 83.4, and 110.5 MTU/acre for a wide range of bulk permeability. They examine the temporal and spatial extent of the temperature and saturation changes during the first 100,000 yr. They also examine the sensitivity of mountain scale moisture redistribution to a range of AMLs and bulk permeabilities. In addition, they investigate how boiling and buoyant, gas-phase convection influence thermo-hydrological behavior in the vicinity of emplacement drifts containing spent nuclear fuel
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom