Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications; Final report
Author(s) -
Paul J. Wilbur
Publication year - 1993
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/143969
Subject(s) - materials science , ion implantation , vaporization , crucible (geodemography) , graphite , anode , ion source , current density , ceramic , metallurgy , analytical chemistry (journal) , composite material , ion , chemistry , electrode , chromatography , computational chemistry , physics , organic chemistry , quantum mechanics
The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred {mu}A/cm{sup 2} on a target 50 cm downstream of the ion source have been demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom