z-logo
open-access-imgOpen Access
RHEED studies of the nucleation, growth, and mobility of Ag atoms on the Si(111)7 x 7 surface
Author(s) -
K. R. Roos
Publication year - 1993
Language(s) - English
Resource type - Reports
DOI - 10.2172/140415
Subject(s) - reflection high energy electron diffraction , diffusion , nucleation , electron diffraction , superstructure , chemistry , surface diffusion , scaling , diffraction , deposition (geology) , atmospheric temperature range , crystallography , analytical chemistry (journal) , optics , thermodynamics , physics , geometry , paleontology , mathematics , organic chemistry , adsorption , chromatography , sediment , biology
The low temperature and flux dependent growth of ultrathin Ag films on the Si(111)7x7 surface is studied with Reflection High-Energy Electron Diffraction (RHEED). The grazing incidence geometry of RHEED allows for an incident molecular beam normal to the surface, and makes it an ideal surface probe for studying ultrathin film growth in real time. Short-lived oscillations in the diffracted intensity are observed during Ag deposition at 150 K, indicating quasi-layer-by-layer growth mediated by adatom mobility. When the 150 K growth is performed over a wide range of deposition rates F, the peak intensity is observed to scale, i.e. I(Ft) depends only on the total amount deposited, which implies thermally activated diffusion is absent at 150 K. Scaling is not obeyed at higher temperatures (T{ge}473 K) for the growth of the {radical}3{times}{radical}3 R30{degrees} ({radical}3) superstructure. Testing for scaling of the diffracted intensity constitutes a new experimental method which can be applied generally to determine if thermal diffusion is active at a particular temperature. Scaling is consistent with a constant diffusion length R{sub 0}, independent of substrate temperature and deposition rate. The presence of a non-thermal diffusion mechanism (responsible for the constant diffusion length R{sub 0}) is confirmed by monitoring the flux dependence of the {radical}3 superstructure growth during deposition at T{ge}473 K. At these temperatures the total diffusion length R is given by R=R{sub 0}+(4Dt){sup 1/2}, where (4Dt){sup 1/2} is the thermal component. A non-zero intercept R{sub 0} is found by plotting the peak intensity I{sub p}{sup 1/2} (a measure of the average domain size) vs. deposition rate F{sup {minus}1/2} (F{sup {minus}1} is proportional to the available diffusion time.) From the FWHM of a low coverage (0.2 ML) {radical}3 spot, an estimation of 50 {angstrom} is made for a lower bound of the magnitude of R{sub 0}.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom