z-logo
open-access-imgOpen Access
FEHMN 1.0: Finite element heat and mass transfer code; Revision 1
Author(s) -
George Zyvoloski,
Zora Dash,
S. Kelkar
Publication year - 1992
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/138419
Subject(s) - finite element method , porous medium , heat transfer , geothermal gradient , mass transfer , mechanics , isothermal process , groundwater , permeability (electromagnetism) , fluid dynamics , porosity , flow (mathematics) , geology , thermodynamics , geotechnical engineering , physics , chemistry , geophysics , biochemistry , membrane
A computer code is described which can simulate non-isothermal multi-phase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and groundwater flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved sing the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user`s guide and sample problems are also included. The FEHMN (Finite Element Heat and Mass Nuclear) code, described in this report, is a version of FEHM (Finite Element Heat and Mass, Zyvoloski et al., 1988) developed for the Yucca Mountain Site Characterization Project (YMP). The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the potential Yucca Mountain repository

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom