z-logo
open-access-imgOpen Access
Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers; Overview
Author(s) -
J.C. Farmer,
R.D. McCright,
J.N. Kass
Publication year - 1988
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/137650
Subject(s) - metallurgy , radioactive waste , materials science , stress corrosion cracking , intergranular corrosion , corrosion , crevice corrosion , borosilicate glass , alloy , waste management , engineering
Three iron- to nickel-based austenitic alloys and three copper-based alloys are being considered as candidate materials for the fabrication of high-level radioactive-waste disposal containers. The austenitic alloys are Types 304L and 316L stainless steels and the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). Waste in the forms of both spent fuel assemblies from reactors and borosilicate glass will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking; and transgranular stress corrosion cracking. Problems specific to welds, such as hot cracking, may also occur. A survey of the literature has been prepared as part of the process of selecting, from among the candidates, a material that is adequate for repository conditions. The modes of degradation are discussed in detail in the survey to determine which apply to the candidate alloys and the extent to which they may actually occur. The eight volumes of the survey are summarized in Sections 1 through 8 of this overview. The conclusions drawn from the survey are also given in this overview

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom