Rock mass modification around a nuclear waste repository in welded tuff
Author(s) -
M. Mack,
T. Brandshaug,
B.H.G. Brady
Publication year - 1989
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/137520
Subject(s) - rock mass classification , radioactive waste , thermoelastic damping , geology , waste disposal , spent nuclear fuel , excavation , slip (aerodynamics) , geotechnical engineering , thermal , mineralogy , waste management , engineering , physics , aerospace engineering , meteorology
This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom