Cancellation of RF Coupler-Induced Emittance Due to Astigmatism
Author(s) -
D.H. Dowell
Publication year - 2016
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1336366
Subject(s) - thermal emittance , injector , optics , physics , linear particle accelerator , output coupler , beam (structure) , bunches , beam emittance , diffraction , lens (geology) , transverse plane , tilt (camera) , electron , quadrupole , resonator , engineering , nuclear physics , atomic physics , mechanical engineering , structural engineering , thermodynamics
It is well-known that the electron beam quality required for applications such as FEL’s and ultra-fast electron diffraction can be degraded by the asymmetric fields introduced by the RF couplers of superconducting linacs. This effect is especially troublesome in the injector where the low energy beam from the gun is captured into the first high gradient accelerator section. Unfortunately modifying the established cavity design is expensive and time consuming, especially considering that only one or two sections are needed for an injector. Instead, it is important to analyze the coupler fields to understand their characteristics and help find less costly solutions for their cancellation and mitigation. This paper finds the RF coupler-induced emittance for short bunches is mostly due to the transverse spatial sloping or tilt of the field, rather than the field’s time-dependence. It is shown that the distorting effects of the coupler can be canceled with a static (DC) quadrupole lens rotated about the z-axis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom