Physics design and scaling of Elise
Author(s) -
E.P. Lee,
R.O. Bangerter,
Chun Fai Chan
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/132780
Subject(s) - linear particle accelerator , physics , particle accelerator , beam (structure) , nuclear physics , scaling , nuclear engineering , ion beam , injector , computer science , aerospace engineering , computational physics , optics , engineering , geometry , mathematics , thermodynamics
Elise is an electrostatically focused heavy-ion accelerator being designed and constructed at Lawrence Berkeley Laboratory. The machine is intended to be the first half of the four-beam Induction Linac Systems Experiment (ILSE), which ultimately will test the principal beam dynamics issues and manipulations of induction heavy-ion drivers for inertial fusion. Elise will use an existing 2 MeV injector and will accelerate space-charge-dominated pulses to greater than 5 MeV. The design objective of Elise is to maximize the output beam energy within the fixed project budget while allowing for adequate beam diagnostics, flexibility in the acceleration schedule, and beam parameters suitable for ILSE and the experimental program. The authors review the design equations and ``rules of thumb`` used for choosing beam and lattice parameters for heavy-ion induction accelerators, and they discuss incorporating these relations in a spreadsheet program that generates internally consistent lattice layouts and acceleration schedules. These designs have been tested using a one-dimensional (1-D) particle simulation code, SLIDE, a 3-D fluid/envelope code, CIRCE, and a 3-D particle-in-cell code WARP3D. Sample results from these calculations are presented. Results from these dynamics codes are also shown illustrating sensitivities to beam and lattice errors and testing various strategies for longitudinal confinement of the beam ends
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom