z-logo
open-access-imgOpen Access
Gas dynamics modeling of the HYLIFE-II reactor
Author(s) -
C. Jantzen
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/132779
Subject(s) - shutter , mechanics , physics , microsecond , millisecond , shock (circulatory) , jet (fluid) , optics , medicine , astronomy
Gas dynamics in the IFE reactor, HYLIFE-II is modeled using the code, TSUNAMI. This code is a 2-D shock-solver that uses the Godunov method with operator splitting. Results from a cylindrically symmetric simulation indicate an initial, low density, burst of high energy particles enters the final focus transport lens within 40 microseconds after the blast, much faster than the proposed 1 millisecond shutter closing time. After approximately 100 microseconds the chamber debris flux levels off to one eighth its peak value and maintains this intensity until the shutter closes. Although initial protective jet ablation is considered, neither secondary radiation nor condensation are modeled. Therefore results are conservative

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom