Speciation and structural characterization of plutonium and actinide-organic complexes in surface and groundwaters. 1998 annual progress report
Author(s) -
Ken O. Buesseler,
Daniel J. Repeta,
J.M. Kelley
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/12615
Subject(s) - environmental chemistry , plutonium , groundwater , genetic algorithm , actinide , organic matter , chemistry , environmental science , isotope , total organic carbon , radiochemistry , geology , nuclear chemistry , ecology , geotechnical engineering , organic chemistry , biology , physics , quantum mechanics
'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. This study expands considerably on prior work due to the combination of Pu oxidation studies (for Pu speciation/chemical reactivity information), Pu isotope ratio work (for Pu source function information), and the detailed characterization of organic matter in size-fractionated groundwater samples. They have postulated that actinide associations with organic matter may be enhanced due to colloidal biopolymers. This report summarizes work completed after less than 2 years of a 3-year project. Activities thus far have included: (1) the development of sampling techniques to minimize contamination and artifact formation, (2) the separation of Pu isotopes by oxidation state in groundwater, (3) the development of techniques for the separation and identification of organic constituents from natural waters, (4) a study of background Pu and organic carbon concentrations at the proposed study sites, and (5) field work at the Savannah River site (SRS).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom