Chemical and microstructural characterization of thermally grown alumina scales
Author(s) -
K. Natesan,
C. Richier,
B. W. Veal
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/125404
Subject(s) - materials science , alloy , auger electron spectroscopy , oxide , spallation , sulfur , metallurgy , microstructure , raman spectroscopy , analytical chemistry (journal) , chemical engineering , chemistry , neutron , physics , chromatography , quantum mechanics , nuclear physics , engineering , optics
An experimental program has been initiated to evaluate the chemical, microstructural, and mechanical integrity of thermally grown oxide scales to establish requirements for improved corrosion performance in terms of composition, structure, and properties. Iron aluminides of several compositions were selected for the study. Oxidation studies were conducted in air and oxygen environments at 1000{degrees}C. The results showed that the scaling kinetics followed a parabolic rate law but that the rates in early stages of oxidation were significantly greater than in later stages; the difference could be attributed to the presence of fast-growing transient iron oxides in the layer during the early stages. Further, scale failure occurred via gross spallation, scale cracking, and nodule formation and was influenced by alloy composition. Auger electron spectroscopy of Ar-exposed specimens of ternary Fe-Cr-Al alloy showed sulfur on the gas/scale side of the interface; the sulfur decreased as the exposure time increased. Raman spectroscopy and ruby fluorescence were used to examine the scale development as a function of oxidation temperature. Ruby-line shift is used to examine phase transformations in alumina and to calculate compressive strains in thermally grown scales
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom