Vapor space characterization of waste tank 241-C-101: Results from samples collected on 9/1/94
Author(s) -
R.B. Lucke,
T.W. Clauss,
M.W. Ligotke
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/125370
Subject(s) - sorbent , hanford site , environmental science , waste management , baton rouge , environmental chemistry , chemistry , radioactive waste , adsorption , engineering , organic chemistry , art , fin de siecle , art history
This report describes results of the analyses of tank-headspace samples taken from the Hanford waste Tank 241-C-101 (referred to as Tank C-101) and the ambient air collected - 30 ft upwind near the tank and through the VSS near the tank. Pacific Northwest Laboratory (PNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and to analyze inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The sample job was designated S4056, and samples were collected by WHC on September 1, 1994, using the vapor sampling system (VSS). The samples were inspected upon delivery to the 326/23B laboratory and logged into PNL record book 55408 before implementation of PNL Technical Procedure PNL-TVP-07. Custody of the sorbent traps was transferred to PNL personnel performing the inorganic analysis and stored at refrigerated ({le} 10{degrees}C) temperature until the time of analysis. The canisters were stored in the 326/23B laboratory at ambient (25{degrees}C) temperature until the time of the analysis. Access to the 326/23B laboratory is limited to PNL personnel working on the waste-tank safety program. Analyses described in this report were performed at PNL in the 300 area of the Hanford Reservation. Analytical methods that were used are described in the text. In summary, sorbent traps for inorganic analyses containing sample materials were either weighed (for water analysis) or desorbed with the appropriate aqueous solutions (for NH{sub 3}, NO{sub 2}, and NO analyses). The aqueous extracts were analyzed either by selective electrode or by ion chromatography (IC). Organic analyses were performed using cryogenic preconcentration followed by gas chromatography/mass spectrometry (GC/MS)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom