Characterizing high-energy light curves of Fermi/Lat GRBs
Author(s) -
Jarred Gillette
Publication year - 2015
Language(s) - English
Resource type - Reports
DOI - 10.2172/1213160
Subject(s) - physics , gamma ray burst , redshift , light curve , astrophysics , fermi gamma ray space telescope , brightness , rest frame , astronomy , galaxy
A systematic analysis of the light curves of Gamma-Ray Burst (GRBs) with redshift and detected at high-energy (> 100 MeV) by Fermi/LAT has never been done before our work, because there were only a handful of detections. Now we have 20 of those, which we can use to characterize the GRBs in their rest frame. We compared a characteristic decay times Tc of GRBs with redshifts using the new “Pass 8” data, and used a Crystal Ball function to parametrize GRB characteristics. An unexpected anti-correlation between Tc and the peak flux was observed. This means that brighter peaked GRBs have shorter durations. There is also no correlation between the Tc and the decay index, which makes the anti-correlation with brightness more clear. This results appears to be consistent with the External Shock model, which is one of the competing hypothesis on the origin of the high-energy emission. We did not observe any bimodality, which is seen in GRBs at lower energies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom