Characterization of static- and fatigue-loaded carbon composites by X-ray CT
Author(s) -
V. Savona,
H.E. Martz,
Hal R. Brand,
S.E. Groves,
S DeTeresa
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/119995
Subject(s) - materials science , composite material , tension (geology) , thermoplastic , peek , compression (physics) , composite number , characterization (materials science) , polyimide , stress (linguistics) , thermoplastic composites , polymer , linguistics , philosophy , layer (electronics) , nanotechnology
The development and improvement of advanced materials is strictly connected to the understanding of the properties and behavior of such materials as a function of both their macro and micro-structures. The application of X-ray computed tomography (CT) to these materials allows for a better understanding of the materials properties and behavior on either macro or micro-structure scales. The authors applied CT to study a set of aerospace grade carbon fiber/thermoplastic matrix composites. Samples of APC-2 (PEEK/AS4) were subjected to either static or high-stress fatigue loading in tension. Both notched (central circular hole) and unnotched specimens were examined. They are investigating a high-temperature thermoplastic polyimide composite sample by acquiring CT data sets before, during (at set intervals), and after full-reversal (tension-compression), low-stress fatigue loading at the upper use temperature. The CT scanner employed and the results obtained in the analysis of 3D CT data sets to study the defects and other features within the different composites are presented in this report
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom