z-logo
open-access-imgOpen Access
Preliminary geostatistical modeling of thermal conductivity for a cross section of Yucca Mountain, Nevada
Author(s) -
C.A. Rautman
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/119961
Subject(s) - porosity , thermal conductivity , geology , geostatistics , tectonics , petrophysics , soil science , mineralogy , geomorphology , geotechnical engineering , spatial variability , thermodynamics , statistics , mathematics , seismology , physics
Two-dimensional, heterogeneous, spatially correlated models of thermal conductivity and bulk density have been created for a representative, east-west cross section of Yucca Mountain, Nevada, using geostatistical simulation. The thermal conductivity models are derived from spatially correlated, surrogate material-property models of porosity, through a multiple linear-regression equation, which expresses thermal conductivity as a function of porosity and initial temperature and saturation. Bulk-density values were obtained through a similar, linear-regression relationship with porosity. The use of a surrogate-property allows the use of spatially much-more-abundant porosity measurements to condition the simulations. Modeling was conducted in stratigraphic coordinates to represent original depositional continuity of material properties and the completed models were transformed to real-world coordinates to capture present-day tectonic tilting and faulting of the material-property units. Spatial correlation lengths required for geostatistical modeling were assumed, but are based on the results of previous transect-sampling and geostatistical-modeling work

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom