Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems
Author(s) -
Franglin Chen,
David S. Sholl,
Kyle Brinkman,
Ratnasabapathy Lyer,
Ratnasabapathy G. Iyer,
Kenneth Reifsnider
Publication year - 2015
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1169918
Subject(s) - hydrogen , tritium , air separation , materials science , nuclear engineering , waste management , environmental science , process engineering , chemistry , nuclear physics , engineering , oxygen , physics , organic chemistry
This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performancemore » of sequestration materials.« less
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom