RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES
Author(s) -
R. P. Johnson
Publication year - 2014
Language(s) - English
Resource type - Reports
DOI - 10.2172/1157043
Subject(s) - magnetic field , plasma , materials science , radio frequency , fermilab , muon , electric field , particle accelerator , mechanics , nuclear engineering , electrical engineering , physics , optics , nuclear physics , engineering , beam (structure) , quantum mechanics
Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved, and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Recent studies have shown that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this project we use this high pressure technique to suppress effects of residual gas and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of radiofrequency and surface preparation. A 1.3-GHz RF test cell with replaceable electrodes (e.g. Mo, Cu, Be, W, and Nb) has been built, and a series of detailed experiments is planned at the Argonne Wakefield Accelerator. These experiments will be followed by additional experiments using a second test cell operating at 402.5 MHz.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom