Estimates of zonally averaged tropical diabatic heating in AMIP GCM simulations. PCMDI report No. 25
Author(s) -
J.S. Boyle
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/114016
Subject(s) - diabatic , atmospheric sciences , environmental science , isentropic process , latent heat , atmosphere (unit) , meteorology , sensible heat , climatology , atmospheric circulation , air mass (solar energy) , radiative cooling , mechanics , thermodynamics , physics , geology , adiabatic process , boundary layer
An understanding of the processess that generate the atmospheric diabatic heating rates is basic to an understanding of the time averaged general circulation of the atmosphere and also circulation anomalies. Knowledge of the sources and sinks of atmospheric heating enables a fuller understanding of the nature of the atmospheric circulation. An actual assesment of the diabatic heating rates in the atmosphere is a difficult problem that has been approached in a number of ways. One way is to estimate the total diabatic heating by estimating individual components associated with the radiative fluxes, the latent heat release, and sensible heat fluxes. An example of this approach is provided by Newell. Another approach is to estimate the net heating rates from consideration of the balance required of the mass and wind variables as routinely observed and analyzed. This budget computation has been done using the thermodynamic equation and more recently done by using the vorticity and thermodynamic equations. Schaak and Johnson compute the heating rates through the integration of the isentropic mass continuity equation. The estimates of heating arrived at all these methods are severely handicapped by the uncertainties in the observational data and analyses. In addition the estimates of the individual heating components suffer an additional source of error from the parameterizations used to approximate these quantities
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom