Transport and magnetism correlations in thin-film ferromagnetic oxides
Author(s) -
M. F. Hundley,
J. J. Neumeier,
R. H. Heffner,
Qingyang Jia,
Xuming Wu,
J. D. Thompson
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/113963
Subject(s) - magnetoresistance , condensed matter physics , electrical resistivity and conductivity , ferromagnetism , colossal magnetoresistance , magnetism , magnetization , materials science , thin film , magnetic field , physics , nanotechnology , quantum mechanics
In order to determine the {Tc}-dependence of the colossal magnetoresistance (MR) exhibited by the ferromagnetic La{sub 0.7}M{sub 0.3}MnO{sub 3+{sigma}} (M = Ba, Ca, Sr) system, the authors examine the magnetic-field and temperature dependent resistivity and magnetization of a series of thin films that were grown via pulsed-laser deposition. The films had magnetic ordering temperatures (T{sub C}) ranging from 150 to 350 K; all samples displayed a large negative MR that is largest near {Tc}. The magnitude of a given sample`s MR at {Tc} inversely correlates with {Tc}; samples with a low {Tc} display significantly larger MR values than do samples with large {Tc}`s. The quantity {rho}({Tc})/{rho}(4 K), the amount by which the resistivity is reduced by full ferromagnetic order, is an activated function of {Tc} with an activation energy E{sub a} = 0.1 eV. These results indicate that the magnitude of the CMR effect in a given specimen is controlled not by {rho}({Tc}), but by {Tc} via the ratio {rho}({Tc})/{rho}(4 K). Phenomenological scaling relationships are also reported that link {rho}(H,T) to both H and M(H, T)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom