The Physics of Basis For A Conservative Physics And Conservative Technology Tokamak Power Plant, ARIES-ACT2
Author(s) -
C. Kessel,
F. M. Poli
Publication year - 2014
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1127360
Subject(s) - bootstrap current , tokamak , physics , cyclotron , pedestal , nuclear physics , atomic physics , safety factor , radius , computational physics , electron , plasma , engineering , mechanical engineering , computer security , computer science
The conservative physics and conservative technology tokamak power plant ARIESACT2 has a major radius of 9.75 m at aspect ratio of 4.0, strong shaping with elongation of 2.2 and triangularity of 0.63. The no wall βN reaches ~ 2.4, limited by n=1 external kink mode, and can be extended to 3.2 with a stabilizing shell behind the ring structure shield. The bootstrap current fraction is 77% with a q95 of 8.0, requiring about ~ 4.0 MA of external current drive. This current is supplied with 30 MW of ICRF/FW and 80 MW of negative ion NB. Up to 1.0 MA can be driven with LH with no wall, and 1.5 or more MA can be driven with a stabilizing shell. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.65x10 /m and the temperature is ~ 9.0 keV. The H98 factor is 1.25, n/nGr = 1.3, and the net power to LH threshold power is 1.3-1.4 in the flattop. Due to the high toroidal field and high central temperature the cyclotron radiation loss was found to be high depending on the first wall reflectivity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom