z-logo
open-access-imgOpen Access
Direct catalytic decomposition of nitric oxide. Final report
Author(s) -
Maria FlytzaniStephanopoulos,
A.F. Sarofim,
Yanping Zhang
Publication year - 1995
Language(s) - English
Resource type - Reports
DOI - 10.2172/111932
Subject(s) - selective catalytic reduction , copper , catalysis , calcination , inorganic chemistry , zeolite , chemistry , ion exchange , nox , flue gas , ammonia , oxide , metal , decomposition , combustion , ion , organic chemistry
This project investigated a suitable catalyst system for the direct NO decomposition for post-combustion NO{sub x} control. The studied process does not use a reductant, such as ammonia in the case of Selective Catalytic Reduction (SCR) process for catalytic reduction of NO{sub x} to nitrogen. This is a simplified process basically involving passing the flue gas through a catalytic converter, thus avoiding problems generally associated with the commercial SCR process, namely high operating cost, ammonia slip, and potential N{sub 2}O emissions. The main results from this research project are summarized in the following: Cu-ZSM-5 and M/Cu-ZSM-5 were synthesized by incorporating metal cations into ZSM-5 zeolite supports by optimized ion exchange procedures. It was found that (1) the catalytic activity of Cu-ZSM-5 only increased with copper loading when the Cu-ZSM-5 was prepared in an aqueous copper acetate solution with pH lower than 5.74; (2) high pH of the solution led not only to ion-exchanged Cu{sup 2+}, but also copper deposition on the zeolite surface forming inactive CuO particles as identified by STEM/EDX and XRD; (3) the sequence of metal ion exchange first, followed by copper ion exchange to synthesize M/Cu-ZSM-5, where M represents any metal ion but copper, was important for the cocation to show promotion effects; and (4) air-calcination of M-ZSM was effective in keeping M cations in the zeolite during subsequent copper ion exchange. Positive alkaline and rare earth metal cocation effects on the Cu-ZSM-5 were identified in oxygen-containing gas mixtures in the high temperature region (450--600C). Cerium ion promoted the Cu-ZSM-5 activity in the low temperature range (< 450C) in oxygen-free gas mixture, while alkaline earth and transition metal cocations improved the NO conversion to N{sub 2} in high temperature region

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom