Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.
Author(s) -
Jeanne C. Stachowiak,
Carl C. Hayden,
Oscar Negrete,
Ryan Davis,
Darryl Y. Sasaki
Publication year - 2013
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1096477
Subject(s) - membrane curvature , lipid bilayer fusion , microbiology and biotechnology , membrane , membrane protein , biology , cell membrane , viral entry , virus , virology , lipid bilayer , biochemistry , viral replication
Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom