Three-dimensional, Impulsive Magnetic Reconnection in a Laboratory Plasma
Author(s) -
et al S Dorfman
Publication year - 2013
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1090586
Subject(s) - magnetic reconnection , physics , current sheet , plasma , rope , magnetohydrodynamics , current (fluid) , range (aeronautics) , computational physics , plasma sheet , mechanics , magnetosphere , aerospace engineering , nuclear physics , structural engineering , engineering , thermodynamics
Impulsive, local, 3-D reconnection is identified for the first time in a laboratory current sheet. The events observed in the Magnetic Reconnection Experiment (MRX) are characterized by large local gradients in the third direction and cannot be explained by 2-D models. Detailed measurements show that the ejection of flux rope structures from the current sheet plays a key role in these events. By contrast, even though electromagnetic fluctuations in the lower hybrid frequency range are also observed concurrently with the impulsive behavior, they are not the key physics responsible. A qualitative, 3-D, two-fluid model is proposed to explain the observations. The experimental results may be particularly applicable to space and astrophysical plasmas where impulsive reconnection occurs
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom