ENVIRONMENTAL ASSESSMENT METHODOLOGY FOR THE NUCLEAR FUEL CYCLE
Author(s) -
David L. Brenchley,
J.K. Soldat,
J.A. McNeese,
E.C. Watson
Publication year - 1977
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1087580
Subject(s) - effluent , environmental science , nuclear fuel cycle , radionuclide , waste management , radioactive waste , population , pollution , nuclear engineering , environmental engineering , engineering , physics , environmental health , quantum mechanics , medicine , ecology , biology
This report describes the methodology for determining where environmental control technology is required for the nuclear fuel cycle. The methodology addresses routine emission of chemical and radioactive effluents, and applies to mining, milling, conversion, enrichment, fuel fabrication, reactors (LWR and BWR) and fuel reprocessing. Chemical and radioactive effluents are evaluated independently. Radioactive effluents are evaluated on the basis of maximum exposed individual dose and population dose calculations for a 1-year emission period and a 50-year commitment. Sources of radionuclides for each facility are then listed according to their relative contribution to the total calculated dose. Effluent, ambient and toxicology standards are used to evaluate the effect of chemical effluents. First, each chemical and source configuration is determined. Sources are tagged if they exceed existirrg standards. The combined effect of all chemicals is assessed for each facility. If the additive effects are unacceptable, then additional control technology is recommended. Finally, sources and their chemicals at each facility are ranked according to their relative contribution to the ambient pollution level. This ranking identifies those sources most in need of environmental control
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom