z-logo
open-access-imgOpen Access
FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES
Author(s) -
John H. Paul
Publication year - 2013
Language(s) - English
Resource type - Reports
DOI - 10.2172/1084239
Subject(s) - oceanography , environmental science , plume , nutrient , water column , salinity , ecology , geology , biology , geography , meteorology
Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plume (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic nutrient input. The offshore ORP was characterized by haptophyte and in places Prochlorococcus carbon fixation gene expression in surface water, with greater heterokont rbcL RNA at SCM depths. MODIS satellite chlorophyll-a data implied a plume of high chlorophyll water far into the eastern Caribbean, yet field observations did not support this, most likely because of high levels of colored dissolved organic matter (cDOM) in the ORP. The presence of pelagic nitrogen fixers (Trichodesmium and cyanobacterial diatom endosymbionts) most likely provided N for the offshore MRP production. The results underscore the importance of oceanic river plumes as sinks for CO2 and the need for their incorporation in global carbon models as well as estimates of CO2 sequestration

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here