z-logo
open-access-imgOpen Access
Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis
Author(s) -
Matthew W. Meyer
Publication year - 2013
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1082977
Subject(s) - raman spectroscopy , raman scattering , coherent anti stokes raman spectroscopy , optics , spectroscopy , x ray raman scattering , spectrometer , analytical chemistry (journal) , materials science , interference (communication) , chemistry , physics , telecommunications , computer science , channel (broadcasting) , chromatography , quantum mechanics
This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom