NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL
Author(s) -
Ahmed F. Ghoniem,
Alexandre J. Chorin,
A. K. Oppenheim
Publication year - 1980
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1076529
Subject(s) - turbulence , combustion , mechanics , vortex , flow (mathematics) , schlieren photography , exothermic reaction , tracing , computer science , thermodynamics , physics , chemistry , flow visualization , organic chemistry , operating system
A numerical technique for the analysis of turbulent flow associated with combustion is presented, The technique utilizes Chorin's RVM (Random Vortex Method), an algorithm capable of tracing the action of elementary turbulent eddies and their cumulative effects without imposing any restriction upon their motion. In the past RVM has been used with success to treat non-reacting turbulent flows, revealing, in particular, the mechanics of large scale flow patterns, the so-called coherent structures. Introduced here is a flame propagation algorithm, also developed by Chorin, in conjunction with volume sources modeling the mechanical effects of the exothermic process of combustion. As an illustration of its use, the technique is applied to flow in a combustion tunnel where the flame is stabilized by a back-facing step. Solutions for both non-reacting and reacting flow fields are obtained, under the restriction of a set of most stringent idealizations, mimicking nonetheless quite satisfactorily the essential features of turbulent combustion in a lean propane-air mixture that were observed in the laboratory by means of high speed schlieren cinematography
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom