z-logo
open-access-imgOpen Access
Guiding Center Equations for Ideal Magnetohydrodynamic Modes
Author(s) -
R. B. White
Publication year - 2013
Language(s) - English
Resource type - Reports
DOI - 10.2172/1073494
Subject(s) - guiding center , physics , magnetohydrodynamics , magnetic field , toroid , classical mechanics , magnetohydrodynamic drive , topology (electrical circuits) , magnetosphere particle motion , ideal (ethics) , plasma , quantum mechanics , mathematics , philosophy , epistemology , combinatorics
Guiding center simulations are routinely used for the discovery of mode-particle resonances in tokamaks, for both resistive and ideal instabilities and to find modifications of particle distributions caused by a given spectrum of modes, including large scale avalanches during events with a number of large amplitude modes. One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through δ~B = ∇ X (ξ X B) however perturbs the magnetic topology, introducing extraneous magnetic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian displacement of the field due to the perturbation and conserves magnetic topology as it should. In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories the guiding center equations should include a correct Lagrangian treatment. Guiding center equations for an ideal displacement ξ are derived which perserve the magnetic topology and are used to examine mode particle resonances in toroidal confinement devices. These simulations are compared to others which are identical in all respects except that they use the linear representation for the field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding center equations does not result in extraneous mode particle resonances

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here