z-logo
open-access-imgOpen Access
An experimental study of NO{sub x} recycle in the NOXSO flue gas cleanup process. Quarterly technical progress report, April 1--June 31, 1992
Publication year - 1992
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/106654
Subject(s) - duct (anatomy) , secondary air injection , flue gas , analytical chemistry (journal) , volumetric flow rate , environmental science , flue , chemistry , materials science , nuclear engineering , waste management , mechanics , chromatography , physics , engineering , surgery , medicine
NO{sub x} recycle is one part of the NOXSO process. In this process, 90% of the acid pollutants (NO{sub x} and SO{sub 2}) can be removed simultaneously by adsorption on the surface of a sorbent material. The sorbent is subsequently regenerated by heating and contacting the hot sorbent with a reducing gas followed by steam. The NO{sub x} is removed in the heating process, and the SO{sub 2} is removed by the chemical reaction of the reducing gas and steam. The NO{sub x} stream produced is returned to the combustion process with combustion air, which is called the NO{sub x} recycle. The NO{sub x} is reduced in the flame to N{sub 2}, H{sub 2}O, and CO{sub 2}. The tests of NO injection with combustion have demonstrated very promising results. The test data showed quite consistent NO{sub x} reduction efficiencies, which is similar to the previous test results on the pulverized coal combustor at DOE-PETC. An average of about 70 % NO. destruction efficiency was achieved for the NO injection into the primary air duct independent of injected NO flow rates and exit 02 concentrations. About 58%, 50%, and 46% average destruction efficiencies were obtained for the NO injection into the secondary air duct corresponding to the exit O{sub 2}concentrations of 2%, 3%, and 4% respectively

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom