z-logo
open-access-imgOpen Access
Molecular catalytic coal liquid conversion. Quarterly report
Author(s) -
Leon M. Stock,
Shiyong Yang
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/106462
Subject(s) - tetralin , catalysis , chemistry , hydrodesulfurization , decalin , naphthalene , rhodium , organic chemistry , phase (matter) , chemical engineering , inorganic chemistry , toluene , engineering
In this Quarter, the research was focused continually on the two general tasks: Task 1, molecular organometallic catalysts for hydrogenation and Task 2, organic base catalysts for arene hydrogenation and the hydrotreating of the coal liquids. With regards to Task 1, the biphase catalyst system, [1,5-HDRhCI]{sub 2}/buffer, was investigated in detail for the hydrogenation of naphthalene or tetralin to decalin under low pressure of H{sub 2} at room temperature. The influence of various factors such as the amount of the phase transfer regent, the volume ratio of the organic phase to the aqueous phase, the pH value and compositions of the buffer solution as well as the solvents on the reaction process was investigated systematically. It was found that the rhodium catalyst works well under biphase conditions rather than under phase transfer conditions. Apparently, the surfactant molecules negatively affect the catalytic activity of the rhodium catalyst. The pH values and the compositions of the buffers in the aqueous phase are critical in the system. The best buffer solution is composed of hydrion with its pH of 7.4--7.6. In addition to tetralin, the Rh catalyst is also effective for the hydrogenation of other unactivated aromatic hydrocarbons such as toluene, n-butylbenzene etc. In addition, the turnover numbers of the catalyst can reach 200, but its performance needs to be improved further for practical applications. The work on this issue is currently underway. Task 2 was focused on the hydrotreating of coal liquid (VSOH) catalyzed by Catalyst 2 and Catalyst 5. Good results were achieved on this issue. Catalyst 5 was found to be a more effective catalyst for the hydrotreating of coal liquid than Catalyst 2. The coal liquid was hydrotreated to give a clear yellow liquid under relative mild conditions (1000 psi of hydrogen and 200C) if only 16 mol% of the Catalyst 5 was employed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom