Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels
Author(s) -
James F. Stubbins
Publication year - 2012
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1058923
Subject(s) - nuclear fission product , fission products , fuel element failure , spent nuclear fuel , nuclear fuel cycle , high level waste , waste management , nuclear engineering , radioactive waste , environmental science , actinide , nuclear fuel , fuel cycle , engineering , nuclear chemistry , chemistry
The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom