
REACTIVITY INITIATED ACCIDENT TEST SERIES TEST RIA 1-4 EXPERIMENT PREDICTIONS
Author(s) -
Shin–ichi Fukuda,
Z.R. Martinson
Publication year - 1980
Language(s) - English
Resource type - Reports
DOI - 10.2172/1056361
Subject(s) - rod , cladding (metalworking) , burnup , materials science , shroud , composite material , nuclear engineering , chemistry , structural engineering , nuclear chemistry , engineering , medicine , alternative medicine , pathology
The results of the pretest analyses for Test RIA 1-4 are presented. Test RIA 1-4 consists of a 3x3 array of previously irradiated MAP! fuel rods. The rods have 5.7% enriched UO{sub 2} fuel in zircaloy-4 cladding with an average burnup of 5300 MWd/t. The objective for Test RIA 1-4 is to provide information regarding loss-of-coolable fuel rod geometry following RIA event for a radial-average peak fuel enthalpy equivalent to the present licensing criteria of 1172 J/g (280 cal/g UO{sub 2}). Radial averaged peak fuel enthalpies of 1172 J/g (280 cal/g) 1077 J/g {257 cal/g), and 978 J/g (234 cal/g) for the corner, side, and center fuel rods, respectively, are planned to be achieved during a 2.7 ms reactor period power burst. The results of the FRAP-T5 analyses indicate that all nine rods will fail within 26 ms from the start of the power burst due to pellet-cladding mechanical interaction. All of the rods will undergo partial fuel melting. All rods will operate under extended film boiling (>30 sec) conditions and about 70% of the cladding length is expected to be molten. Approximately 15% of the cladding thickness will be oxided. Fuel swelling due to fission gas release and melting combined with fuel and cladding fragmentation, will probably produce a complete coolant flow blockage within the flow shroud