
Measurement of the neutron (<sup>3</sup>He) spin structure functions at low Q<sup>2</sup>: A connection between the Bjorken and gerasimov-drell-hearn sum rule
Author(s) -
P. Djawotho
Publication year - 2002
Language(s) - English
Resource type - Reports
DOI - 10.2172/1054275
Subject(s) - physics , quantum chromodynamics , nuclear physics , sum rule in quantum mechanics , nucleon , particle physics , hadron
This dissertation presents results of experiment E94-010 performed at Jefferson Laboratory (simply known as JLab) in Hall A. The experiment aimed to measure the low Q{sup 2} evolution of the Gerasimov-Drell-Hearn (GDH) integral from Q{sup 2} = 0.1 to 0.9 GeV{sup 2}. The GDH sum rule at the real photon point provides an important test of Quantum Chromodynamics (QCD). The low Q{sup 2} evolution of the GDH integral contests various resonance models, Chiral Perturbation Theory ({chi}#31;PT) and lattice QCD calculations, but more importantly, it helps us understand the transition between partonic and hadronic degrees of freedom. At high Q{sup 2}, beyond 1 GeV{sup 2}, the difference of the GDH integrals for the proton and the neutron is related to the Bjorken sum rule, another fundamental test of QCD. In addition, results of the measurements for the spin structure functions g{sub 1} and g{sub 2}, cross sections, and asymmetries are presented. E94-010 was the first experiment of its kind at JLab. It used a high-pressure, polarized {sup 3}He target with a gas pressure of 10 atm and average target polarization of 35%. For the first time, the polarized electron source delivered an average beam polarization of 70% with a beam current of 15 {micro}#22;A. The limit on the beam current was only imposed by the target. The experiment required six different beam energies from 0.86 to 5.1 GeV. This was the first time the accelerator ever reached 5.1 GeV. Both High-Resolution Spectrometers of Hall A, used in singles mode, were positioned at 15.5#14;{deg} each